
Chapter 2
Quantum Mathematics

Summary The Vienna Experiments show that quantum indeterminacy has
mathematical origins, rather than originating in any unknown physics. This
chapter sets the tone for mathematical discipline needed in exposing those
origins; and demonstrates an example of easy-to-access logic, visibly manifest
in Quantum Mathematics, which textbook theory ignores.

2.1 Mathematical Discipline

In this book I often refer to the term Quantum Mathematics. By this, I mean
the mathematics used in representing Quantum Theory. I make the distinc-
tion between Mathematics and Theory for the reason that explanations pro-
posed in this book, which account for phenomena surrounding indeterminacy,
concern Quantum Mathematics, rather than some missing part of Quantum
Theory. Maybe surprisingly, the book’s focus is on the freedoms that Quantum
Mathematics permits, rather than any constraints it imposes.

Answers explaining quantum indeterminacy have long been there, hidden
within Quantum Mathematics; but for the reason that Quantum Mechanics is
done in the traditions of Applied Mathematics, those answers have remained
obscured. However, the experimental work done in Vienna has forced the issue.
The Vienna Experiments were evaluated from the standpoint of Mathematical
Logic, by employing formalism known as a formal system to represent them.

When Quantum Mathematics is treated as a formal system, the machinery
of indeterminacy becomes apparent. Exposing that machinery involves trac-
ing through the derivation of Quantum Theory’s formulae, to reveal logically
independent information they contain. Briefly stated, logical independence
refers to the logical disconnect that exists between items of mathematical
information, which neither prove nor disprove one another.
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This logical independence must be recognised formally, if Quantum Mathe-
matics is to be made truly isomorphic with experiments. That means; in the
usual way of doing Mathematical Physics, account must be kept of all Pos-
tulates and information they assert, imply or prove — the theory’s theorems.
But in addition, account must be kept, also, of information with which those
theorems are merely consistent — that is to say: all information the theorems
do not contradict, which also, they do not imply.

A vital point to realise is there is no contradiction in a theory consisting
of information whose source is its axiom-set, plus extra information whose
source is logically independent. Quantum Mathematics, in totality, will in-
clude axioms and their theorems — plus extra consistent formulae, deriving
from logically independent machinery such as simultaneity, self-referential cir-
cularity or symmetry, not envisaged by Axioms.

The Vienna Experiments concern the measurement of photon polarisation.
They demonstrate that the different behaviours of predictable outcomes of
pure states, and random outcomes of mixed states�, stem respectfully from
an identifiable logical connect, and logical disconnect, conveyed in polarisation
information.

It so happens that in Quantum Mathematics, there is corresponding con-
nect and disconnect, which concurs with that empirical evidence. A good place
for the reader to acquaint herself with the ideas is with a demonstration il-
lustrating the mathematical difference between pure and mixed states, as it
appears in the free particle.

2.2 Semantic Interpretation

In the quantum system known as the free particle the mathematics manifestly
exhibits a logical difference, that distinguishes between pure and mixed states.

To see this, it is instructive to understand the difference between syntactic
information versus semantic information. Syntax concerns rules obeyed in
the manipulation or transformation of symbols and sentences�; where step-
by-step, through a finite number of operations, in the manner of a machine
algorithm, one formula is proved or derived from others. We then call this
formula a Theorem. Examples are the proofs given in section 8.�.�.

Semantics, on the other hand, concern interpretations�. Here, interpreta-
tion does not refer to physical meaning, but to mathematical meaning. An
� A mixed state is any state, prior to measurement, which has an unpredictable outcome
at measurement. Pure states are those that are perfectly predictable.
� A sentence is a certain kind of formula. See chapter 8 for an explanation.
3 In Mathematical Logic, an interpretation is often known as a model.
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interpretation is a mathematical structure consistent with axioms. Structures
consistent with the Field Axioms are the fields of scalars: the rational field
Q, the real field R, and the complex field C. These are optional alternative
interpretations. See table 8.�, page �� for the Field Axioms.

Historically, in the traditions of Applied Mathematics, it has been custom-
ary to confer interpretation upon certain variables, in order to make them
agree structurally with physical entities. Classically, position is designated a
real quantity; and in Quantum Mechanics probability amplitude is complex.
Questions I pose are: Are these interpretations demanded by the mathematics
itself, or is there a freedom of choice? Is mathematical self-consistency reliant
on the interpretation; or is the interpretation in the mind of the mathemati-
cian, only?

2.3 Possible Versus Necessary Information

Relevant to the machinery of indeterminacy, there are transition lines where
one region of Quantum Mathematics, freely open to interpretation, interfaces
with one that is rigidly not. That interface constitutes a ‘step’ separating
possible interpretation from necessary interpretation.

This possible|necessary step is illustrated in the Quantum Mathematics of
the quantum free particle. In order to reveal this step, position space and
momentum space representations are considered to be one single, intrinsically
linked, complementary system — accounting for the whole information of the
free particle system. Then, by comparing the semantic information in the
pure states, set against that in the mixed states, the possible versus necessary
interpretations become apparent.

Consider the pure state eigenformulae:

d
dx

[Φ (k) exp (+ikx)] = +ik [Φ (k) exp (+ikx)] (�.�)

d
dk

[Ψ (x) exp (−ikx)] = −ix [Ψ (x) exp (−ikx)] (�.�)

These two formulae are true, irrespective of any interpretation placed on the
variable ‘i’. Indeed, in these, ‘i’ can be interpreted as an arbitrary scalar. But
in contrast, the mixed state pair of superpositions:

Ψ (x) =
� +∞

−∞
[Φ (k) exp (+ikx)] dk (�.�)

Φ (k) =
� +∞

−∞
[Ψ (x) exp (−ikx)] dx (�.�)
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is true, only if we interpret ‘i’ as pure imaginary.
In the case of the pure state eigenformulae (�.�)–(�.�) the imaginary in-

terpretation is purely in the mind of the theorist; but for the mixed state
pair (�.�)–(�.�) the imaginary interpretation is implied in the mathematics.
Whilst for the mixed state pair specific interpretation is necessary; for the
pure state eigenformulae interpretation is possible but not necessary.

Remark 1. In writing (�.�)–(�.�), the italicised variables k, x are arbitrary
scalars, and the san-serif notated k and x are rational or real (bound) dummy
variables over the integrals. But there are a couple of issues of incidental in-
terest, which must be said. In each of the pure state formulae (�.�)–(�.�), no
validity is lost if k and x are permitted as arbitrary scalars. Furthermore, in
the pure state formulae (�.�)–(�.�), the functions Φ and Ψ can be anything at
all; in the mixed state pair (�.�)–(�.�) these must be members of the Hilbert
space L2.

2.4 Possible Versus Necessary Unitarity

Whether or not the variable ‘i’ is to be interpreted as the imaginary unit, de-
termines whether the mathematics is unitary. The fact is that quantum theory
for pure states need not be unitary or self-adjoint; whereas, for mixed states,
unitarity is necessary. The step from pure states to mixed states represents a
logical jump from possible unitarity to necessary unitarity.

Historically, the distinction between possible and necessary unitarity has
not been noticed as any point of significance. No doubt, standard quantum
theory ignores the fact with the intention of maintaining ‘consistent values’
across the theory. Following the traditions of Applied Mathematics, as if to
iron out ‘the inconsistency’, an interpretation is applied across the whole of
Quantum Theory, as an overall blanket condition. But, from the standpoint
of any formal system, that designated interpretation is an extraneous axiom.
What’s more, that axiom will constitute redundant information that obscures
the true information that the mathematics genuinely asserts and conveys.

Rewriting (�.�)–(�.�) as formulae in first order logic shows there is no ‘value
inconsistency’, and that the possible|necessary information can be conveyed
by a single theory. Thus, for pure states:

∀η | d
dx

�
Φ (k) exp

�
η+1kx

��
= η+1k

�
Φ (k) exp

�
η+1kx

��
(�.�)

∀η | d
dk

�
Ψ (x) exp

�
η−1xk

��
= η−1x

�
Ψ (x) exp

�
η−1xk

��
(�.6)

And for mixed:
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∃η | Ψ (x) =
� +∞

−∞

�
Φ (k) exp

�
η+1kx

��
dk (�.7)

∃η | Φ (k) =
� +∞

−∞

�
Ψ (x) exp

�
η−1xk

��
dx (�.8)

These formulae are consistent because there is no contradiction between the
universal quantifier ∀η in (�.�)–(�.6) and the existential quantifier ∃η in (�.7)–
(�.8).

2.5 Breaking Free of the Unitary Postulate

Whilst (�.�)–(�.8) depict a mathematical system that is self-consistent, which
truthfully and faithfully represents both pure and mixed states; that faithful-
ness is had at the expense of quantum theory’s most treasured Principle. These
new formulae violate the Quantum Postulate imposing unitary|Hermicity; be-
cause the formulae (�.�)–(�.6), and Postulate, are in contradiction. Specifi-
cally, (�.�)–(�.6) are not unitary ∀η, but only for the two values: η = ±i.

Not to worry. The postulated unitary|Hermicity is not needed. Unitarity
is implied where it is needed: in the mathematics of mixed states, implicit in
complementarity. Elsewhere unitary|Hermicity is redundant.

Once free of the Unitary Postulate, the imaginary unit no longer exists
axiomatically across the whole theory, but only where implied by (�.7)–(�.8).

Finally, the step-transition from pure states in (�.�)–(�.6) to mixed states
in (�.7)–(�.8) is picked up in Chapter ��; and as we shall see there, once
its axiomatic existence is discarded, a logically independent imaginary unit
is exposed. Likewise in Chapter ��, we shall see analogous behaviour in the
Pauli system.

2.6 Principles for the Conveyance of Whole Information

In Mathematical Logic, ‘necessary information versus possible information’ is
recognised as constituting a Modal Logic. Yet, in textbook Quantum Theory,
the distinction separating possible from necessary is not especially noticeable,
nor is it recognised; and the logical distinction separating pure states from
mixed states is lost.

In order to reveal logical information missed by standard Quantum Theory, I
propose strict observance of the following Principles:

• Utterly disregard all physical meaning.
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† Treat formulae purely as statements in mathematics.

• Treat complementary systems as a single system.

† In textbook Wave Mechanics it is acceptable to perform calculations in
either complementary system: either in momentum space or in position
space, say. That approach yields qualitative and quantitative informa-
tion but misses logical information. Complementary systems coexist with
information flowing between them. They must be considered as a single
system.

• Observe what is actually asserted by the mathematics.

† The mathematician may not introduce new information, not derivable
from formulae already in place, without recording the fact in an account
of assumptions made. For instance, assignment of scalars to the real line,
say, potentially brings in new information from outside the mathematics.

• Be wary of making inadvertent assumptions which the algebra cannot ex-
press.

† When physicists set out a problem they begin by agreeing a convention
of right-handed reference frames for �–space. Yet, the algebra knows
nothing of this right-handedness, nor even can it represent it.

2.7 Avoiding Confusion over Terminology

2.7.1 Orthogonal

Before going further, it is important to clear up any confusion over my use
of the term ‘orthogonal’. Risk of confusion arises through the fact there
are certain vector spaces, notably the Lie algebras�, whose basis vectors are
matrices, and whose span covers all possible linear combinations of those
matrices. And so the term ‘orthogonal’ might ambiguously apply to pairs of
matrices as basis vectors, or, to matrices themselves, as being members of the
Orthogonal Group.

Unless I state otherwise, I am referring to orthogonality between vectors.
More specifically, my use of the term refers to a zero dot product; in this form:

eiej + ejei = 0 (�.�)
4 Lie algebras are vector spaces equipped with commutator products between basis vec-
tors. A well-known example is the algebra of the Canonical Commutation Relation.
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fundamental. Whilst generally I use the terms unitary and unitary|Hermitian
interchangeably, fundamentally, I am talking about unitarity.

2.7.3 Fields and Scalars

Elementary Algebra is the bedrock algebra upon which Quantum Mathemat-
ics rests; it is the algebra of fields and scalars. This Algebra and its fields and
scalars play a huge part in the story of indeterminacy.

The fields and scalars of Elementary Algebra are not to be confused with
those conceptualised in Physics; although in some circumstances they may
actually be the same things. In Physics, scalars are first rank tensors (whose
transformations are invariant) and fields are arrangements of objects spread
throughout some space or other. The fields and scalars of Elementary Alge-
bra are objects that satisfy the Axioms of Elementary Algebra — the Field
Axioms.


