
Chapter 8
Verifying Logical Independence
of the Imaginary Unit

Summary This chapter explains and demonstrates logical independence of
the imaginary unit, in relation to the Field Axioms.

8.1 Elementary Algebra as Formal System

Elementary Algebra is a first order theory. Typically, first order theories de-
scribe properties and objects on domains. They incorporate constants, vari-
ables, terms and functions. They are very familiar to engineers and physicists.

Here, I treat Elementary Algebra as a formal system or formal theory�. My
reason for doing so is that the full logic is conveyed and expressed explicitly.

A formal system comprises: a formal language, rules for writing formulae
(propositions) and further rules of deduction. Information is designated in
two levels of compulsion. Propositions assert information that is questionable.
And Axioms are propositions presupposed to be ‘true’; they are postulates
adopted a priori.

Vital is the use of quantifiers: there-exists (∃) and for-all (∀). Quantifiers
convey important information, missed out in ordinary equations; their em-
ployment eliminates unintended ambiguities relating to domain. For instance:
the equation y = x2 doesn’t express whether ∀y∃x

�
y = x2�

, or ∀x∃y
�
y = x2�

,
is intended. Yet, logically, these two are very different. In addition to quanti-
fiers, formal systems also employ the logical connectives: not (¬), and (∧) ,
or (∨), implies (⇒) and if-and-only-if (⇔); and also the turnstile symbols:
derives (�) and models (|=).
� Good references for physicists on formal theories are: Edward Stabler’s book, An intro-
duction to mathematical thought [��]; the book by Wei Li, Mathematical Logic [�7]. For
a course on the subject: The Open University, M381 Mathematical Logic [��].
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8.2 The Field Axioms

Elementary algebra is the abstraction of the familiar arithmetic used to com-
bine numbers in the rational, real and complex number systems, through the
operations of addition and multiplication. These number systems are the in-
finite fields. Rules for their algebra are the Field Axioms.

An efficient axiom-set is a selection of propositions, all logically independent
of one another. Axioms chosen to do a particular job won’t necessarily be
unique, and there may be slight variation between those chosen by different
authors. Table 8.� lists the axiom-set chosen here. They are the well-known,
conventional Field Axioms, appended with the additional axiom Inf, which
guarantees zero is unique and the finite fields are excluded by denying modulo
arithmetic. This ensures that Elementary Algebra covers only the infinite
fields.

Remark 9. It is interesting to speculate whether these axioms might have some
physical significance in Nature.

The Field Axioms

Additive Group
A� ∀β∀γ∃α | α = β + γ Closure
A� ∃0∀α | α + 0 = α Identity 0
A� ∀α∃β | α + β = 0 Inverse
A� ∀α∀β∀γ | (α + β) + γ = α + (β + γ) Associativity
A� ∀α∀β | α + β = β + α Commutativity

Multiplicative Group
M� ∀β∀γ∃α | α = β × γ Closure
M� ∃1∀α | α × 1 = α Identity 1
M� ∀β∃α | α × β = 1 ∧ β �= 0 Inverse
M� ∀α∀β∀γ | (α × β) × γ = α × (β × γ) Associativity
M� ∀α∀β | α × β = β × α Commutativity

Am ∀α∀β∀γ | α × (β + γ) = (α × β) + (α × γ) Distributivity
Inf ∀α | α �= 0 ∧ α + 1 �= 0 ⇒ α (α + 1) �= 0 Unique zero

Table 8.�: The Field Axioms. These are written as sentences in first-order logic. The axiom
Inf is included to exclude all finite fields, that is, all modulo arithmetic; meaning that the
field of rationals is the smallest. Collectively, Axioms assert a definite set of information,
deriving a definite set of theorems. Any proposition (in the language) is either a theorem
or is otherwise logically independent. Theorems include proofs and negations; all other
statements in the language are logically independent.
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Collectively, the Field Axioms assert a definite set of information, by deriving a
definite set of theorems. Any proposition (in the language) is either a theorem,
or is otherwise logically independent of them. Note that proof of negation is
a theorem. And so, any given formula (in the language) can be regarded
as a proposition in Elementary Algebra, that may prove to be a theorem,
derivable from the Field Axioms, or otherwise, without exception, be logically
independent.

Which of these is actually the case can (in principle) be diagnosed in a pro-
cess that compares information in the given proposition or formula, against
information contained in the Field Axioms. This would involve attempting
to derive that proposition from the Field Axioms, to discover that: either
it is a theorem; or otherwise, extra information is needed to complete its
derivation, that Field Axioms cannot provide — demonstrating logical inde-
pendence. But as a test for logical independence, that process will generally
be inconclusive. For a definitive test of logical independence, the Soundness
& Completeness Theorems from Mathematical Logic must be used.

8.3 Examples of Logical Independence
in Elementary Algebra

The propositions (8.�)–(8.�) are five examples illustrating the three distinct
provability values possible, under the Field Axioms.

Notice that these formulae do not assert equality; they assert existence.
Each is a proposition asserting existence for some instance of a variable α,
complying with an equality, specifying a particular numerical value.

∃α | α = 3 (8.�)
∃α | α2 = 4 (8.�)
∃α | α2 = 2 (8.�)
∃α | α2 = −1 (8.�)
∃α | α−1 = 0 (8.�)

Of the five examples, the Field Axioms prove (8.�) and (8.�). Proofs are given
below. Also, the Field Axioms prove the negation of (8.�) because Axiom M�
contradicts (8.�). The remaining two, (8.�) and (8.�), are neither proved nor
negated; they are logically independent of the Field Axioms. Demonstration
of that independence is dealt with in sections 8.�–8.�.

Accordingly, the instance of α in (8.�) is inconsistent with the Field Ax-
ioms; the instances of α in (8.�)–(8.�) are all numbers whose existences are
consistent with the Field Axioms; but in addition to being consistent, exis-
tences of α in (8.�) and (8.�) are also proved or derived by the Field Axioms.

And accordingly, the instance of α in (8.�) is rejected as necessarily non-
existent; instances of α in (8.�) and (8.�) are accepted as scalars, proved to
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Example One

∀β∀γ∃α | α = β + γ

∀κ∀λ∃γ | γ = κ + λ

⇒ ∀β∀κ∀λ∃α | α = β + κ + λ

Example Two

∀β∀γ∃α | α = β + γ

∀β∃γ | γ = 2β

⇒ ∀β∃α | α = β + 2β

⇒ ∀η∃α | α = η + 2η β � η

8.3.2 Proofs

Proposition (8.�) is derivable from the Field Axioms.

Proof.

∃1∀κ | κ × 1 = κ Axiom M�
∀β∀γ∃α | α = β + γ Axiom A� (8.6)

∀β∃α | α = β + β γ � β (8.6) (8.7)
∀β∃γ | γ = β + β α � γ (8.7) (8.8)
∀β∃α | α = β + β + β Substitute (8.8), (8.6) (8.9)

∃α | α = 1 + 1 + 1 Freely Assign β=�, (8.9) (8.��)

Hence, ∃α | α = 3 is proved derivable. �

Proposition (8.�) is derivable from the Field Axioms.

Proof.

∃1∀κ | κ × 1 = κ Axiom M� (8.��)
∀β∀γ∃α | α = β + γ Axiom A� (8.��)

∀β∃α | α = β + β γ � β (8.��) (8.��)
∀α | α × α = α × α identity rule (8.��)

∀β∃α | α × α = (β + β) × (β + β) Substitute (8.��), (8.��) (8.��)
∃α | α × α = (1 + 1) × (1 + 1) Freely Assign β=�, (8.��) (8.�6)
∃α | α × α = ((1 + 1) × 1) + ((1 + 1) × 1) Axiom AM, (8.�6) (8.�7)
∃α | α × α = (1 + 1) + (1 + 1) Axiom M�, (8.�7) (8.�8)
∃α | α × α = 1 + 1 + 1 + 1 (8.�9)

Hence, ∃α | α2 = 4 is proved derivable. �
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8.4 Model Theory: Soundness & Completeness

Model theory is a branch of Mathematical Logic applying to all first-order
theories; which includes Elementary Algebra. Our interest is in two stan-
dard theorems: the Soundness Theorem and its converse, the Completeness
Theorem, as well as theorems that follow from them. These theorems for-
malise the link connecting truth or consistency (semantic information), with
provability (syntactic information) between formulae. In combination these
theorems identify an excluded middle, comprising the set of all non-provable,
non-negatable propositions — those logically independent of Axioms.

Any first-order axiom-set is modelled by particular mathematical struc-
tures, consistent with it. These are closed structures, consistent with each
and every axiom of that axiom-set. In the case of the Field Axioms used in
this book (Table 8.�), those modelling structures are the infinite fields. Each
field consists of numbers known as scalars, with all scalars complying with the
rules of arithmetic, set out by the Field Axioms. A proposition’s logical inde-
pendence from Axioms is confirmed by demonstrating disagreement, between
any two of the Axioms’ models

Of relevance to Quantum Theory is proposition (8.�); this is true in the
complex plane, but false in the real line.

Theorem 1. The Soundness Theorem:

Σ � S =⇒ ∀M (M |= Σ ⇒ M |= S) . (8.��)

If M is any structure that models axiom-set Σ, and Σ derives sentence S,
then every M also models S.
Alternatively: If a sentence is a theorem, provable under an axiom-set, then
that sentence is true for every model of that axiom-set.

Theorem 2. The Completeness Theorem:

Σ � S ⇐= ∀M (M |= Σ ⇒ M |= S) . (8.��)

If M is any structure that models axiom-set Σ, and every M models sentence
S, then Σ derives S.
Alternatively: If a sentence is true for every model of an axiom-set, then that
sentence is a theorem, provable under that axiom-set.

8.4.1 Logical Dependence

Jointly, Theorems � and � imply the �-way implications, in Theorem �:
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