
Chapter 13
Logically Independent Unitarity
in the Free Particle

Summary In Chapter �, I used the quantum free particle to demonstrate how
mixed states are unavoidably unitary, while pure states need not be. The job
this chapter does is demonstrate how an uncaused, accidental self-referential
mechanism facilitates a logical step-transition, from those non-unitary pure
states to the unitary mixed states. And how, in this self-referential system,
complementarity is an inherent consequence of the self-consistency which is
necessary. Effectively, the procedure I work through is a formal logical ap-
proach to the derivation of the Fourier Integral Theorem.

13.1 Pure State Superpositions

I begin with eigenformulae for pure state superpositions. They are formulae
taken from (�.�) and (�.6) which I re-write here, but with all quantifiers stated
explicitly:

∀η∀x∀k∀Φ | η−1 d
dx

�
Φ (k) exp

�
η+1kx

��
= k

�
Φ (k) exp

�
η+1kx

��
(��.�)

∀η∀x∀k∀Ψ | η+1 d
dk

�
Ψ (x) exp

�
η−1xk

��
= x

�
Ψ (x) exp

�
η−1xk

��
(��.�)

My claim is that these two non-unitary eigenformulae faithfully represent
pure state superpositions for momentum and position: (��.�) representing
pure state, momentum superpositions in position space; and (��.�) represent-
ing pure state, position superpositions in momentum space. The crucial and
manifest difference from standard theory is the arbitrary η that replaces the
imaginary unit. You can see that these two formulae share certain variables.
And so they are linked to that extent. Nevertheless, it is perfectly legal to con-
sider these formulae, and they do work perfectly, as separate individuals which
do not communicate with one another. That is to say, no complementarity is
invoked or demanded.
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But now, I intend to build the superpositions Ψ (x) and Φ (k) when com-
plementarity is forced upon position and momentum. Note that in (��.�) and
(��.�), Ψ (x) and Φ (k) can be any functions at all; there is no restriction.

Consider now the following pair of formulae�.

∀η∀x∀a∃Ψ | Ψ (x) =
�

k
�
exp

�
η+1xk

�
a (k)

�
∧ a ∈ L1 (R) (��.�)

∀η∀k∀b∃Φ | Φ (k) =
�

x
�
exp

�
η−1kx

�
b (x)

�
∧ b ∈ L1 (R) (��.�)

In writing these, the san-serif notated k and x are the dummy (bound) vari-
ables over the integrals. The italicised variables η, k, x, a, b are all bound vari-
ables under the existential and universal quantifiers ∃ and ∀. I have laid out
the ordering of variables to mirror the convention of repeated dummy indices
used in summations of discrete quantities, familiar in matrix transformations.
This is done to emphasise that the exponential integrals are integral linear
operators acting on the amplitudes. Note that these formulae do not assert
equality, they assert existence. Also note that the integrals exist, and the pair
of propositions are guaranteed true if a and b are functions restricted to the
Banach space L1 (R).

I state without proof, that all four formulae (��.�)–(��.�) are derivable from
Axioms of Elementary Algebra — the Field Axioms — listed in Table 8.�,
entirely from provable steps, but with the caveat that the derivations never
terminate, due to infinitely many steps being involved; as is the nature of
irrational scalars. In this respect these derivations fall short of being proofs,
although proof to any arbitrary accuracy is possible; as is the nature of rational
scalars. The point here is that all information in (��.�)–(��.�), other than
the fact of non-terminability, derives from information asserted in the Field
Axioms.

13.2 Self-Reference in the Free Particle

I now explore the possibility of (��.�)–(��.�) accepting information, circularly,
from one another, through a mechanism where a (k) feeds off Φ (k) and b (x)
feeds off Ψ (x). This is self-reference that circulates information around a
crossover-loop; continually passing that information back and forth, between
position space and momentum space. There is no cause implying this self-
reference; the idea is that it is prevented by nothing. It’s simply that the Field
Axioms do not contradict this circularity, but are consistent with it. Indeed,
the self-referential information is logically independent of all algebraic rules
in operation — so is available through chance accident.
� I use the notation

�
k f (k) =

� +∞
−∞ f (k) dk.
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To proceed, the strategy followed will be to posit a hypothesis that such self-
reference can occur, then investigate for conditionality implied. To properly
document this assumption, the hypothesis is formally declared, thus:
Hypothesised coincidence:

∀Φ∃a | a = Φ; (��.�)
∀Ψ∃b | b = Ψ. (��.6)

Note: there is no guarantee that any such coincidence should exist; if so, it
will be by chance accident; we proceed to investigate. When this assumed
hypothesis is substituted� into (��.�)–(��.�) we get:

∀η∀x∀Φ∃Ψ | Ψ (x) =
�

k
�
exp

�
η+1xk

�
Φ (k)

�
∧ Φ ∈ L1 (R) (��.7)

∀η∀k∀Ψ∃Φ | Φ (k) =
�

x
�
exp

�
η−1kx

�
Ψ (x)

�
∧ Ψ ∈ L1 (R) (��.8)

These facilitate cross-substitution� of Φ and Ψ. And that permits circularity
in the form of a crossover-loop, a species of multi-loop self-reference, where
functions Ψ and Φ are evaluated in terms of themselves:

∀η∀x
∀Ψ∃Ψ

���� Ψ (x) =
�

k
�
exp

�
η+1xk

� �
x

�
exp

�
η−1kx

�
Ψ (x)

��
∧ Ψ ∈ L1 (R) (��.�)

∀η∀k
∀Φ∃Φ

���� Φ (k) =
�

x
�
exp

�
η−1kx

� �
k

�
exp

�
η+1xk

�
Φ (k)

��
∧ Φ ∈ L1 (R) (��.��)

The formulae (��.�)–(��.��) show an apparent conflict or schism in quantifiers:
in the combinations ∀Ψ∃Ψ and in ∀Φ∃Φ. This may be a weakness in the
formalism which was never designed for self-referential situations. Actually,
both ∀Ψ and ∃Ψ are correct, and likewise, ∀Φ and ∃Φ; the ∀ and ∃ quantifiers
apply separately to different instances of the same variable. To clarify, from
here on, the vectors shall be written with distinct suffices thus: Ψ∀, Ψ∃ and
Φ∀, Φ∃.

In (��.�)–(��.��), to the extent to which the integrals exist, the integral
signs can be moved through to the left, with no effect on the arithmetic.
Then also; by Tonelli’s Theorem, reversing their order preserves their values.
Writing them as mappings, these formulae tidy up to become:

∀η∀x
∀Ψ∃Ψ

����
�

x
�

k exp
��

η+1x + η−1x
�

k
�

Ψ∀ (x) �−→ Ψ∃ (x) ∧ Ψ ∈ L1 (R) (��.��)

∀η∀k
∀Φ∃Φ

����
�

k
�

x exp
��

η−1k + η+1k
�

x
�

Φ∀ (k) �−→ Φ∃ (k) ∧ Φ ∈ L1 (R) (��.��)

�
� See section 8.�.� for substitution involving quantifiers.
3 Self-reference in these spaces forces orthogonality on the vectors. See chapter �6
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Ψ (x) =
�

k
exp (+ixk) Φ (k) Φ (k) =

�

x
exp (−ikx) Ψ (x) (��.��)

Prior to making that substitution, the very first step is to insert the Gaussian
into the left formula. Essentially, in the limiting case, this Gaussian is the
identity function:

1 (k) = lim
�→0

�
exp

�
− �

2k2
��

(��.��)

flattening out to unity over the entirety of k ∈ R as � → 0. The reason the
Gaussian is chosen over k is that this is the variable over which convergence
is in doubt.

Inserting the Gaussian into the integrand:

Ψ (x) =
�

k
exp (+ixk) Φ (k) =

�

k
1 (k) exp (+ixk) Φ (k)

=
�

k

�
lim
�→0

exp
�

− �

2k2
�

exp (+ixk) Φ (k)
�

And substituting for Φ (k):

Ψ (x) =
�

k

�
lim
�→0

exp
�

− �

2k2
�

exp (+ixk)
�

x
e−ikxΨ (x)

�

The presence of the Gaussian ensures this integrand is Lebesgue integrable;
the Dominated Convergence Theorem therefore applies, and the limit can be
extracted out to the left. That allows the

�
x integral sign to move to the left;

then by Fubini (or Tonelli?), the order of integrations can be swapped to do
the

�
k integration first. Tidying a little gives:

Ψ (x) = lim
�→0

�

x

��

k
exp

�
− �

2k2 + ixk
�

e−ikx
�

Ψ (x)

Completing the square:

Ψ (x) = lim
�→0

�

x

��

k
exp

�
− �

2

�
k − ix

�

�2
−

�
ix
�

�2
�

e−ikx

�
Ψ (x)

Ψ (x) = lim
�→0

e−x2/2�

�

x

��

k
exp

�
− �

2

�
k − ix

�

�2
�

e−ikx

�
Ψ (x)

By Theorem ��.��, the translation: k − ix
� → k yields the exponential shift

e−i(−ix/�)x = e−xx/�:

Ψ (x) = lim
�→0

e−x2/2�

�

x

�
e−xx/�

�

k
exp

�
− �

2k2
�

e−ikx
�

Ψ (x)
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Evaluating the inner
�

k integral, using Lemma ��.�� :

Ψ (x) = lim
�→0

e−x2/2�

�

x

�
e−xx/� 1√

�
exp

�
− 1

2�
x2

��
Ψ (x)

Collecting the exponential terms:

Ψ (x) = lim
�→0

�

x

1√
�

exp
�

− 1
2�

x2 − xx
�

− x2

2�

�
Ψ (x)

Ψ (x) = lim
�→0

�

x

1√
�

exp
�
− 1

2�
(x − x)2

�
Ψ (x)

Change of variable: z = 1√
�

(x − x) ⇒ dx =
√

�dz; Ψ (x) = Ψ (
√

�z + x). But
there is an important subtlety here, easy to miss. Because z is a dummy
variable over the integral, it must be rational or real. And so, since x is now
the difference between two rational or real numbers, it must also, without
freedom, also rational or real. I indicate this by changing from the free variable
notation x to the san serif x�, thus giving:

Ψ (x�) = lim
�→0

�

z

√
�

1√
�

exp
�
−1

2z2
�

Ψ
�√

�z + x��

Finally, moving the limit back inside, and evaluating the standard integral:

=
�

z
exp

�
−1

2z2
�

lim
�→0

Ψ
�√

�z + x��

Ψ (x�) = 2πΨ (x�)

And that result is indication of the normalising pre-factors, needed by the
Fourier transform and its inverse, which I never considered throughout the
chapter.

�
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13.5 Supporting Theorems

Theorem 6. Translation Identity
�

dx

f (x − a) e−ipx = e−ipa

�

dx

f (x) e−ipx (��.��)

Proof. Change of variable: set u = x − a; and hence: du = dx. Thus:
�

du

f (u) e−ipu =
�

dx

f (x − a) e−ip(x−a)

But:
�

du

f (u) e−ipu =
�

dx

f (x) e−ipx

Hence:
�

dx

f (x) e−ipx =
�

dx

f (x − a) e−ip(x−a)

=
�

dx

f (x − a) e−ipxe+ipa

= e+ipa

�

dx

f (x − a) e−ipx

⇒ e−ipa

�

dx

f (x) e−ipx =
�

dx

f (x − a) e−ipx

�

Theorem 7. Scaling Identity
�

f (λx) e−ipxdx = 1
λ

�
f (x) e−i p

λ xdx

Proof. Change variables: set pλ = �; u = λx; and hence: du = λdx. Thus:
�

f (u) e−ipudu =
�

f (λx) e−ipλxλdx

But:
�

f (u) e−ipudu =
�

f (x) e−ipxdx

⇒
�

f (x) e−ipxdx =
�

f (λx) e−ipλxλdx

⇒
�

f (x) e−ipxdx =
�

f (λx) e−ipλxλdx
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⇒ 1
λ

�
f (x) e−ipxdx =

�
f (λx) e−ipλxdx

⇒ 1
λ

�
f (x) e−i �

λ xdx =
�

f (λx) e−i�xdx
�

Theorem 8. Fourier of Momentum Derivative

F [−i∂f ] (p) = pF [f ] (p) (��.��)

Proof. For (∂f) ∈ S (R) (Schwartz space)

F [−i∂f ] (p) = 1
(2π)1/2

�

dx

e−ipx (−i∂f) (x)

= 1
(2π)1/2

�

dx

e−ipx (−i∂f) (x)

After integrating by parts, the surface term
�
e−ipxf

�b

a
goes away; because very

rapidly decaying function, thus:

F [−i∂f ] (p) = 1
(2π)1/2

�

dx

(−ip) (−i) e−ipxf (x) +
�
e−ipxf

�b

a

= 1
(2π)1/2 p

�

dx

e−ipxf (x)

= pF [f ] (p)
�

Theorem 9. Fourier of Position Derivative

F [xf ] (p) = +i∂F [f ] (p) (��.��)

Proof. For (∂f) ∈ S (R) (Schwartz space)

F [xf ] (p) = 1
(2π)1/2

�

dx

e−ipxxf (x)

= 1
(2π)1/2

�

dx

∂p

�
ie−ipx

�
xf (x)

= i∂p
1

(2π)1/2

�

dx

�
e−ipx

�
xf (x)

= i∂pF [xf ] (p)
�

Lemma 1. Little Lemma

F
�

exp
�
−z

2x2
��

(y) = 1√
z

exp
�
− 1

2z
y2

�
(��.��)
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x ∈ R; z ∈ C : Re (z) > 0

Proof. Define Gz (x) = exp
�
− z

2 x2�
; G controlled by z, implies the derivative:

∂xGz (x) = −zx exp
�

−z

2x2
�

= −zxGz (x)

Now, for free variable p, apply the Fourier transform to both sides,

F [∂xGz (x)] (p) = F [−zxGz (x)] (p)

By Theorems 8 & �, (��.��) applied on the left, and (��.��) on the right:

ipF [Gz (x)] (p) = −iz∂x (F [Gz (x)]) (p)

This is an ordinary differential equation which can be solved by separation.
Indefinite integral:

�
∂xF [Gz (x)]
F [Gz (x)] =

�
−p

z
dp

⇒ ln |F [Gz]| = − p2

2z
+ C : C ∈ C

⇒ F [Gz] = A exp
�
− p2

2z

�
: A ∈ C

⇒ 1
(2π)1/2

�

dx

e−ipx exp
�
−z

2x2
�

= A exp
�
− p2

2z

�

To find A set p = 0, e−ipx = 1

1
(2π)1/2

�

dx

exp
�
−z

2x2
�

= A × 1

1
(2π)1/2

�
2π

z
= A

1√
z

= A

This 1
z is true for z ∈ R, but need for z ∈ C, and so

√
z is not simple. We have

several possible branches. Since integral is holomorphic in z, differentiability
is a stronger condition on the complex plane than on R. Because holomorphic
we can extend the result to complex z with real part > 0.

�


