
Chapter 6
The Vienna Experiments

Quantum Randomness & Logical Independence

Summary This chapter describes the Vienna Experiments, sets out the rea-
soning used, and then locates the point where logical independence enters the
mathematics. It also explains the loss of information during collapse.

6.1 Logical Independence Demonstrated in Experiments

In ���8, Tomasz Paterek et al published experiments, proving that the origin
of quantum randomness lies in mathematical information [��, �8, ��, ��]. This
was research carried out in Vienna by teams at the Institut für Quantenoptik
und Quanteninformation and Fakultät für Physik, Universität Wien, headed
by Anton Zeilinger and Časlav Brukner.

In experiments measuring photon polarisation, statistics demonstrate a cor-
relation linking predictable outcomes with logical dependence; and random
outcomes with logical independence. This dependence, or independence, are
alternative logical connectives between certain Boolean propositions, found
to encode whether experiment hardware configuration is deducible from mea-
surement outcomes. And so, by way of dependence or independence, these
Boolean propositions relate the prior-to-measurement epistemology, for po-
larisation.

The Vienna Team prove the bare-bones fact, that quantum randomness: corre-
lates with logical independence in mathematics. And so logical independence
must be taken seriously as an important influence in physical processes. But
even without this result, independent of the Vienna findings, there are com-
pelling reasons from within Quantum Mathematics for believing logical inde-
pendence is key.

The job of this book is to derive implications for Wave/Matrix Mechanics
and deduce philosophical implications for the Foundations of Physics.
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6.2 The Experiment Setup

The Paterek et al research concerns polarised photons as information carri-
ers through measurement experiments. The experiment hardware comprises
a sequence of three segments, which in accordance with Paterek, I denote:
Preparation, Blackbox and Measurement. These prepare, then transform, then
measure polarisation states. Informationally, the experiment apparatus can
be thought of as hardware being fed with hard input data, in the form of the
hardware configuration; and expressing output data, in the form of measure-
ment outcome. The hardware configuration is the experiment’s orientational
alignment of interchangeable hardware filters, read from an X–Y–Z reference
system fixed to the hardware. The Y axis is aligned along the direction of pho-
ton propagation. Measured states of polarisation are the experiment’s output
data. Experiments were performed very many times and statistics accumu-
lated. Finally, correlations were found evident, relating configuration input
with experiments’ output, being either random or predictable. Details of the
experiments’ setups are taken from Johannes Kofler’s Dissertation [��].

�. Preparation
Photons prepared alternatively as: |z+�, |x+� or |y+� eigenstates, by fil-
tering through one of these three alternative polarisers:

|z+� Linear polariser aligned at �° to the Z axis.
|x+� Linear polariser aligned at ��° to the Z axis.
|y+� Linear polariser aligned at �° to the Z axis ~ followed by

~ Quarter wave plate aligned at ��° to the Z axis.

�. Blackbox
The previously prepared eigenstates are altered through one of these four
alternative Pauli transformations:

1 no waveplate
σz Half wave plate aligned at ��° to the Z axis.,
σx Half wave plate aligned at �° to the Z axis.,

σxσz Half wave plate aligned at ��° to the Z axis ~ followed by
~ Half wave plate aligned at �° to the Z axis.

�. Measurement
Measurement is performed, by detecting photon capture, directly after one
of these three alternative Pauli transformations:

σz no waveplate
σx Half wave plate aligned at ��.�° to the Z axis.
σy Quarter wave plate aligned at ��° to the Z axis.
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6.3 The Boolean Representation of Experiments

Use shall now be made of the Boolean propositions discussed in section �.�. I
repeat them here:

f (0) = 0 f (1) = 0 f (0) = f (1)
f (0) = 1 f (1) = 1 f (0) �= f (1) (6.�)

Notation: These propositions are shown using notation just as the Vienna
Team wrote them. In sections that follow, I make a slight adjustment to their
notation, by writing

�

f (0) and
�

f (1) to denote deterministic-definite informa-
tion written by the Blackbox; and

�
f (0) and

�
f (1) to denote information, as

read by Measurement. The � and � notation is borrowed from Modal Logic,
respectively meaning necessary and possible.

The Vienna Team represent their experiment configurations using the Boolean
pairs (0, 1), (1, 0), (1, 1). Information held in these pairs is taken directly from
indices in the product σi

xσj
z ; where i and j are interpreted as integers, modulo

�; thus:

σz = σ0
x σ1

z �→ (0, 1) σx = σ1
x σ0

z �→ (1, 0) −iσy = σ1
x σ1

z �→ (1, 1) (6.�)

By way of these three mappings, the Boolean pairs (0, 1), (1, 0), (1, 1) are
linked respectively to the operators: σz, σx, σy. The action (configuration)
of each individual segment: Preparation, Blackbox and Measurement, is each
represented by its own Boolean pair. Action of the Preparation is written thus:

σm
x σn

z �→ (m, n)

Action of the Blackbox is written thus:

σ
�

f(0)
x σ

�

f(1)
z �→

�
�

f (0) ,
�

f (1)
�

(6.�)

where
�

f (0) and
�

f (1) are deterministic-definite, axiomatic versions of the
Boolean functions (6.�). And action of the Measurement is written thus:

σp
x σq

z �→ (p, q)

Remark 3. Variables p and q are not used by The Vienna Team. Instead they
copy values m and n from Preparation and repeat them for Measurement. I
introduce p and q to avoid confusion between the Preparation and Measurement
variables.
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By comparing the three mappings in (6.�) against functions in (6.�) we get
three propositions, each Pauli operator uniquely specific to one:

σz ⇒
�

f (0) = 0 σx ⇒
�

f (1) = 0 σy ⇒
�

f (0) +
�

f (1) = 0 (6.�)

Remark 4. The converse of implications in (6.�) would not be valid, because
any of these three propositions could imply σ0

x σ0
z = 1 the unit operator.

Critically, depending on which Pauli configuration is elected, the Blackbox
sets precisely one of these formulae as an axiom. During the run of an ex-
periment, the Blackbox writes that axiom, onto the photon’s density matrix.
The density matrix holds the whole of that information, complete — deter-
ministically. Subsequently, Measurement attempts to read that information,
and depending on its own configuration, Measurement’s reading will either
‘agree or disagree’ with the Blackbox axiom — or — ‘do neither’. ‘Agree
or disagree’ demonstrates Measurement’s outcome as logically dependent on
the Blackbox configuration; ‘do neither’ demonstrates Measurement’s outcome
as logically independent.

6.4 Locating Logical Independence in the Experiments

The Paterek research is concerned with the fact of logical independence, and
not the question of its origins. In this book the direction is different; here,
focus is on tracing lines of dependency and implication, flowing through ex-
periments — with the aim of locating the point where events depart from
dependency and logical independence enters. That is of interest because, what-
ever ‘anomaly’ occurs at that specific point will shed light on the workings and
machinery of indeterminacy, explaining the uncausedness and indefiniteness.

What follows charts the progress of logical dependence through the exper-
iment hardware, in order to reveal the origin and generation of logical in-
dependence, wheresoever it may arise. The flow of dependency is considered
in two stages. I designate these stages: Blackbox-Processes and Measurement-
Processes. Blackbox-Processes entail the ingress and egress of information pass-
ing through the Blackbox; this is the account from the Blackbox viewpoint.
Measurement-Processes entail the reading of that information, by the Measure-
ment hardware; this is the account from the Measurement viewpoint.

Blackbox-Processes and Measurement-Processes are outlined in Subsections
6.�.� and 6.�.�. They are then shown schematically in Figure 6.�. Chapter ��
expands on this, covering the detail from the Pauli algebraic viewpoint, rather
than that of the Boolean.
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Fig. 6.�: The Vienna Experiments involve polarised photons as information carriers. Po-
larisation information prepared upstream is conveyed in the density matrix, and taken
as input by the measurement hardware. Pivotal in this conveyance is the role of the Or-
thogonality Index NB. In experiments on mixed states, processing of NB is irreversible.
The three scenarios above depict information input feeding into NB, and the subsequent
attempted recovery of information from NB. Comparison of propositions shown in boxes
reveals the overall dependency or independency in each of the three experiments depicted.


